C++ is a high-level, general-purpose programming language created by Danish computer scientist Bjarne Stroustrup. First released in 1985 as an extension of the C programming language, it has since expanded significantly over time; as of 1997, C++ has object-oriented, generic, and functional features, in addition to facilities for low-level memory manipulation for systems like microcomputers or to make operating systems like Linux or Windows. It is usually implemented as a compiled language, and many vendors provide C++ compilers, including the Free Software Foundation, LLVM, Microsoft, Intel, Embarcadero, Oracle, and IBM.
C++ was designed with systems programming and embedded, resource-constrained software and large systems in mind, with performance, efficiency, and flexibility of use as its design highlights. C++ has also been found useful in many other contexts, with key strengths being software infrastructure and resource-constrained applications, including desktop applications, video games, servers (e.g., e-commerce, web search, or databases), and performance-critical applications (e.g., telephone switches or space probes).
C++ is standardized by the International Organization for Standardization (ISO), with the latest standard version ratified and published by ISO in October 2024 as ISO/IEC 14882:2024 (informally known as C++23). The C++ programming language was initially standardized in 1998 as ISO/IEC 14882:1998, which was then amended by the C++03, C++11, C++14, C++17, and C++20 standards. The current C++23 standard supersedes these with new features and an enlarged standard library. Before the initial standardization in 1998, C++ was developed by Stroustrup at Bell Labs since 1979 as an extension of the C language; he wanted an efficient and flexible language similar to C that also provided high-level features for program organization. Since 2012, C++ has been on a three-year release schedule with C++26 as the next planned standard.
Throughout C++’s life, its development and evolution has been guided by a set of principles:
- It must be driven by actual problems and its features should be immediately useful in real world programs.
- Every feature should be implementable (with a reasonably obvious way to do so).
- Programmers should be free to pick their own programming style, and that style should be fully supported by C++.
- Allowing a useful feature is more important than preventing every possible misuse of C++.
- It should provide facilities for organising programs into separate, well-defined parts, and provide facilities for combining separately developed parts.
- No implicit violations of the type system (but allow explicit violations; that is, those explicitly requested by the programmer).
- User-created types need to have the same support and performance as built-in types.
- Unused features should not negatively impact created executables (e.g. in lower performance).
- There should be no language beneath C++ (except assembly language).
- C++ should work alongside other existing programming languages, rather than fostering its own separate and incompatible programming environment.
- If the programmer’s intent is unknown, allow the programmer to specify it by providing manual control.